Design and Fabrication of 3D Electrostatic Energy Harvester
نویسندگان
چکیده
This paper discusses the design of an electrostatic generator, power supply component of the self-powered microsystem, which is able to provide enough energy to power smart sensor chains or if necessary also other electronic monitoring devices. One of the requirements for this analyzer is the mobility, so designing the power supply expects use of an alternative way of getting electricity to power the device, rather than rely on periodic supply of external energy in the form of charging batteries, etc. In this case the most suitable method to use is so-called energy harvesting – a way how to gather energy. This uses the principle of non-electric conversion of energy into electrical energy in the form of converters. The present study describes the topology design of such structures of electrostatic generator. Structure is designed and modeled as a three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure, while the minimum area of the chip, the ability to work in all 3 axes of the coordinate system and the ability to be tuned to reach desired parameters proves promising directions of possible further development of this issue. The work includes simulation of electro-mechanical and electrical properties of the structure, description of its behavior in different operating modes and phases of activity. Simulation results were compared with measured values of the produced prototype chip. These results can suggest possible modifications to the proposed structure for further optimization and application environment adaptation.
منابع مشابه
Energy Harvesters for Human-Monitoring Applications
This paper introduces the basics of energy harvesters and demonstrates two specific vibratory-type energy harvesters developed at the University of Hyogo. The fabrication and evaluation results of the vibratory-type energy harvesters, which employ electrostatic and electromagnetic mechanisms, are described. The aim of developing these devices is to realize a power source for an autonomous human...
متن کاملDesign, Fabrication and Characterization of Wearable Energy Harvester Using Polyvinylidene Fluoride
This paper describes the design, fabrication and characterization of Polyvinylidene Fluoride (PVDF) based piezoelectric energy harvester that scavenges energy from the movement of human limbs. It investigates the effect of a piezolaminated curvilinear shell structure on the power density of a wearable energy harvester through Finite Element Method (FEM) and experimental results. Curvilinear She...
متن کاملDesign, Fabrication and Characterization of a Vibration Driven Multi-frequency Electromagnetic Energy Harvester
This paper presents design, fabrication and characterization of an electromagnetic energy harvester, which can operate at different resonance frequencies. It utilizes magnetic spring technique to scavenge energy from low frequency vibrations. The optimization of generator is done in two stages. First, optimization of a single harvester is done in terms of number of turns, coil width, coil posit...
متن کاملResonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester
The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...
متن کاملAn Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کامل